NASA TECHNICAL
TRANSLATION

NASA TT F-195

c/
o LOAN cor &= 8 gy, o
o AFw E= ¢
- KIRTLANS = B v
— D_.= > Vio .1
O s B
< Sg 5
2 FUE n
= = “:
—— ]

ON B. G. GALERKIN’S METHOD
FOR THE SOLUTION OF
BOUNDARY VALUE PROBLEMS

by M. V. Keldys/o

From Izvestiya Akademii Nauk SSSR,
Seriya Matematicheskaya
Vol. 6, No. 4, 1942

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION o WASHINGTON, D. . o MARCH 1964



TECH LIBRARY KAFB, NM

L

00Laa?e

ON B, G. GALERKIN'S METHOD FOR THE SOLUTION
OF BOUNDARY VALUE PROBLEMS

By M. V. Keldysh

Translation of ""O metode B, G. Galerkina dlya resheniya
krayevykh zadach'"

From Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya
Vol. 6, No., 4, pp. 309-330, 1942

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Office of Technical Services, Department of Commerce,
Washington, D, C, -- Price $1,50



ON B. G. GALERKIN'S METHOD FOR THE SOLUTION
OF BOUNDARY VALUE PROBLEMS

by

M. V. Keldysh

SUMMARY

In 1915 B. G. Galerkin proposed a method
for the solution of boundary value problems of
ordinary differential equations. As became
known later, in the case of wvariational prob-
lems this method coincides essentially with
Rietz's method. But Galerkin's method does
not depend on the variational nature of prob-
lems and wmay therefore be applied to non-
selfadjoint equations.

In the present paper we prove the ap-
plicability of the method to some classes of
differential equations.

In Section 1 we consider the general
ordinary differential equation of order 2n.
Section 2 contains a detailed investigation
of all boundary conditions of the second-
order equation, which relate to the values of
the functions and of the derivative at each
endpoint of the interval, In Section 3 we



. consider the Dirichlet problem for partial
differential equations., The convergence (in
the mean) of the solutions and the conver-
gence of the eigenvalues are established in
the general case.

This article provides a proof of the convergence of
Galerkin's method for certain types of linear differential equa-
tions.

In 1915 B. G. Galerkin proposed a new method for the so-
lution of boundary value problems of ordinary differential
equations, which he applied to the solution of a number of
stability problems in elasticity theory(1). Later it became
clear that in the case of variational problems this method is
essentially the same as that of Rietz. However, the application
of Galerkin's method does not depend on the variational problem
which determines the differential equations, and can be also
applied to non-selfadjoint equations. Recently Galerkin's
method was widely applied to non-selfadjoint systems in studies
of non-conservative mechanical systems, and invariably yielded
good results.

Rietz's method for the solution of variational problems
was substantiasted for the simplest cases in the works of Rietz
himself. After the work of Rietz, a number of studies were de-
voted to this method, and, particularly, it was studied in depth
in the fundamental works of N. M. Krylov and N. N. Bogolyubov.
On the other hand, insofar as we know, the application of
Galerkin's method to non-selfadjoint systems has not yet been

substantiated. In certain quarters(z’z) doubts were even ex-—
pressed about the validity of its application. Recently G. I.

Petrov(A) published a paper in which he gave a theoretical
justification of Galerkin's method for a number of special
cases, by reducing the convergence problem to the investigation
of an infinite system of linear equations.

We shall also take advantage of the connection between
Galerkin's method and systems of linear equations, and we will



prove the convergence of this method in a great number of cases
by imposing a number of necessary restrictions on the set of
approximating functions.

In Section 1 we consider the general ordinary differen-
tial equation of order 2n, and we confine ourselves to the
gsimplest boundary conditions. The carrying over of the proof to
other boundary conditions should present no major difficulties.

In Section 2 we analyze in detail all boundary conditions
of the second-order equation which relate the values of the
functions and of the derivative at each endpoint of the interval.

In Section 3 we consider the Dirichlet problem for partial
differential equations. In this case, under the general restric-
tions imposed on the set of functions, we no longer have uniform
convergence of the solutions. We establish, however, their con-
vergence in the mean, and the convergence of the eigenvalues.

In this case, the investigation of the infinite system is also
considerably more difficult.

SECTION 1., THE EQUATION OF ORDER 2n

Let us consider on the interval O < x <1 the equation of
order 2n

oy 2 .
L) = p X Y b (e == £, 1)
dxzn 0 dxt
i=

depending on the parameter A which varies in the region D of the
complex plane. The coefficients of the equation are assumed to



be continuous functions of x and A, when x varies on the interval
(0.1) and Ain the region D, and analytic functions of A in D. We
will assume that the coefficients are differentiable with respect
to x as many times as will be necessary, and that

p (x) >o0.

We will consider the system S formed by equation (1) and the
simplest boundary conditions

y(k) (0) = y(k) (1), k= 0y1ye0ey n -1 (2)

For a fixed A, either the system S, has, as is known, & solution
for any value of the right-hand side of (1), or the homogeneous
system S (obtained by set up £ (x) = 0) admits a solution different
from zero. The values A for which the latter condition holds are
known as eigenvalues.

Academician B. G. Galerkin proposed a method for solving
the system S, which required the solution of a system of linear
algebraic equations for the construction of each approximation.
This method consists of the following:

Let

CP1 (x), (PZ(X),--~’ CPm(X):--- (3)



be a set of functions satisfying the boundary conditions (2). Let

Yo = 1V () + Xy (x) + +ov + W () (4)

(m)

and to determine the constants X construct a system of linear

algebraic equations as follows:

1
[y - flpax=0, 1=1, 2,.com. (5)
0

This system has the following form:
m
(m)-f — (
e.. (A %, . 0, 6)

and its coefficients are holomorphic functions of A in D.



The eigenvalues of the system S will be sought as the
limits of the eigenvalues of the algebraic system (6), and if A
is not an eigenvalue of the system S, its solution will be
sought as the limit of the sequence

AN CS PP €5 P €5 T (7)

with coefficients determined from the equations (6).

As is known, in the case that equation (4) can be obtained
as Buler's equation for a real functional, the method of
Academician Galerkin coincides with the method of Rietz for the
solution of the corresponding variational problem. As distinct
from Rietz's method, however, the method of Academician Galerkin
can be applied also to non-selfadjoint equations, and to
equations with complex coefficients.

We shall prove the following proposition:

If the set of functions consisting of the first n powers
of x and of the n-th derivatives of the functions of sequence (3)

1, X% xz,..., xp_1, (m) ¢én2..., én)... (8)

is complete in the mean square deviation sense, then

1. The eigenvalues of the system S are obtained by a
limiting process from the eigenvalues of system (6).

2. The eigenfunctions of the system S are obtained as



limits of the sequence (7), whose coefficients are obtained from
the solution of the homogeneous equations (6), which correspond to
the eigenvalues of system (6).

3. If A is not an eigenvalue of the system S, the so-
Jution of S is the 1limit of the sequence ('7) with coefficients de-
termined from (6) for the same value of A.
For j < n the derivatives yn(lJ) (x) converge uniformly to
the corresponding derivatives of the solution y, while ylin) (x)
converges in the mean to y(n) (x).

For purposes of proof we note that equation (1) can always
be written in the form

n-1 n-1
= G PR BRI A AR
3=0 3=0

Further, in the proof we can assume that the functions ‘Pn(ln) (%)

form an orthonormal set with weight p (x)

(9)



In fact, if this is not the case, we can always construct
a new set of functions ?m(x), obtained from the set (3) by a

linear transformation which orthogonalizes the set of n-th deriva-
tives (3)

m m
*m - z Cnk P’ P = z Bmk wk‘
i=0 i=0

The set of algebraic equations of the m—th approximation which is
obtained initially from the sequence of functions *m’ can be ex—

cluded from system (6) by the change of variables

m
yi(m) - Z Bkixf;m)
=i

and by the formation of linear combinations of the equations of
system (6)

i

k=1



It follows that the eigenvalues of system (6) and Ki = 0 coincide,

and that the sequence (7) remains unchanged in the transition from
the sequence ¢ to the sequence *m'

Let us note several properties of the expansions with
respect to the set of functions qéé)(x).
By virtue of the boundary conditions (2), every function

win)(x) is orthogonal to all powers xk, for k < n,

1

I £ ?in) (x) dx = 0, k < n.
0

From this, and from the completeness of the set of functions (8)
it follows that any function f(x) which is orthogonal to all

qP(n)

m

is a polynomial of degree n-i
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£ (x) = ¢, + c1x+ cee + Cp xn—1,

0

and any function g (x) which is orthogonal to the first powers
of x

gx dx = 0, k < n,

O &e——

can be approximated in the mean by linear combinations of the

functions ¢(n). In particular, if the set m(n)

1s orthogonal-
m m

ized with weight p (x), the Fourier expansion of g (x) with

(n)

respect to the functions gmn converges in the mean to g (x).

If the functions %in)(x) are orthogonal, then by virtue

of the boundary conditions,

1 1

n it (1%, m=k;
Jf' Py c% (Pﬁpn(ln))dx: (-1) ‘]r P‘Pl(c )(Plgn)dx = { . ntx
0 0 ’ ’

Consequently, system (6) can be written in the form




m
(m) . © (m) _ ¢ -
Xi + L Aik ) Xk £ o,
k=1
where
e T N S
B, LTV D+ S el gax =
“”Am‘JLLg§(%% YE L Tyee ] 93X = 0
0 1=0 j:O
1
n _r
(-1) £, = J f-cpidx.
0
Faurther, we put
A ™ 2qpc ¥ Py
where
1 n-1
_f (@ v (3
= ) 93 Ly o
0 j=0
1 n-l
0  j=0

11

(10)

> (11)

- (12)
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The expression 8s1 is obtained by integrating by parts n times

the term Aik which corresponds to the first term in the square

bracket.

The system (10) is obtained by truncating the infinite

system of linear equations

(13)

We shall prove that the system (13) is equivalent to the system S
in the following sense: To the solution y (x) of the system S

there corresponds the solution of system (13)

with convergent sum of squares

[=e]

MEAREE
=1

(14)



13

and conversely, to any solution of system (13) with convergent sum

of gsquares there corresponds a solution of the system S. In par-

ticular, the eigenvalues of systems (13) and S coincide.
Let y (x) be the solution of system S. We shall expand

y(n) in a Fourier series with respect to the orthogonal set of

functions qﬁn)(x). Determining the coefficients according to

formulas (14), we obtain the expansion

7™ () ~ 2 X :p(nlll)(X), (15)

which converges in the mean, since y(n)(x) ig orthogonal to

2 n-1
Ty X3 X7y wee 9 X

by virtue of the boundary conditions. Integrating this expansion,
and determining the constants from the boundary conditions, we
obtain the uniformly converging expansions

a

Y(j) (x) = Z X cpgf), j<m (151)

m=1
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Multiplying equation (1') by ¢i(x) and integrating on the interval

(0, 1) we have, after integration by parts, the following relation:

1 n-~1 n-1
j [py(n)¢i(n) + z qjy(j)‘PJg_n) + (_1 )n Z pjy(j)wi”(—‘l )nfcpi]dxz 0.
0 J=0 J-0

(16)

Substituting in the above the expansions (15) and (15') and
integrating the series term by term, we ascertain that the X,
satisfy system (13).

Conversely, let us assume that x is a solution of system

(13) with convergent sum of squares. Applying the Fisher-Riess
theorem, we form the function T (x) with the series expansion

1@~ ) xel® () (17)
=1

with respect to the orthogonal system cpE:), and we put

y (x) = z 9 (x).

m=1
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The series thus obtained and its derivatives of order < n converge
uniformly, since they are obtained by integrating the series (17),
and in addition

y(n) (x) =1 (x)

almost everywhere. The function y (x) clearly satisfies the
boundary conditions, and it must be shown that it satisfies the
differential equation (1'). It follows from the definition of
¥y (x) that the equations (13) can be written in the form (16).
Integrating by parts n times the last two terms of the integral
expression (16), we obtain

1 n-1 X x n-1

' j r j n' {(n
JI‘ [py(n) + Z qu(J) + Jr,_, J ( z rjy(J) _f> dx ]‘Pj(_ )dX: 0.
0 j=0 0 0 j=0

It follows that the function in the square brackets, being ortho-

gonal to all (P(n)’ will be a polynomial of degree n - 1
m

(a) n-1 (1) X x n-1 (1)

n), N J \ j) g8 —

Py ) 4 +II trijdx = Gy + Cyx +=+ C
=0 0O 0 j=0
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Differentiating this relation n times, we see that y (x) satisfies
equation (1).

We shall now prove that the eigenvalues of system (13) are
obtained by a limiting process from the eigenvalues of system (10),
and the solutions X;,...,% ;... of system (13) are obtained by a

limiting process from the solutions qu),..., () of system (10),

and that strong convergence holds

lim z B xlgm)|2 = 0. (18)
m —Xx
k=1

By virtue of Koch's results for linear systems it suffices to show
that the series

Y lay, W) (19)

ik

converges uniformly in the region D(1>. From (18) it follows
jmmediately that the sequence y£n> converges in the mean to the

n-th derivative of the solution of 5, and y(J)

- converges uni-

formly to yj(x) for j < n.
We will prove that the series (19) converges in the in-



17

terior of the region D in which A varies, and that the sum of the
gseries is uniformly bounded in the interior of D.

Since the terms of the series (19) are the squares of the
moduli of analytic functions, it follows that the series (19)
converges uniformly in the interior of D¥.

It suffices to show the convergence and boundedness of
the sum of the series

N 2 N 2
L lagel™s L LI
i,k ik

Let us consider the first series. By virtue of Bessel's in-

equality, we have for the orthogonal set ¢(n) with weight p (x)
m

@ 1 n-1
Y e |? Y oqeld) (m]F &
é:] lalk‘ = g .LO qjcPkJ ( ) p(X) ’
1= F

since a3y ig the i-th Fourier coefficient of the function

¥The latter follows from the fact that in any subregion D, the
series (19) is dominated by a series of harmonic functions with
bounded sum, and from Harnak's theorem.
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n-1

1 § (3)
p(x) Z %
3=0

Thus

© 1 ,n-1 2 4
f 2 0 . . bd
Plag P2 ) T1) apVel =5
) ik o p(x)
i,k k=1 0 'j=0

Expressing cpli;]) (x) in terms of (plin) (x) by the formula

)y F o aeit (@)
‘Pk (x) = m ) (x - t) cF’k (t) dt,
we obtain
n-1 X n- ( )
x -1 n
Zq ‘Pl(cJ)(X - J (Zq () ‘;—_—J_—)—/ <p( )(t) at
3=0 =0

Consequently, the left side of this equality is the Fourier co-

(20)



efficient of a function of t which is obtained by dividing the
bracket in the integrand into p (t) on the interval 0 < t < x
and zero on x < t = 1.

By virtue of Bessell!s inequality

@ n-1 ( ) X D.‘-:‘] ( t)n_j_1 2 dt
STV @el® s T ]Y qulomr) —==
LLY% ) T LAY T T p (t)
k=1 =0 0 =0
and by virtue of (20)

1 x n-1
v | lzsr dx JI‘ Z q (%) (x - )23 2 at
ifk ik ‘ép(ﬂo =0 (m-3-11] p )

It follows that the series E;\ai converges and that

n
its sum is bounded in the interior of the region D.

' 2
Let us now consider the series lebik(x>| . Using the

expression for by We have, by Schwartz's inequality

1 1

n-1 2
2 _ ¢ 2 I A
oy l™ =y loylTax- Lrjtpl(cj) dx
0 0 l3=0
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whence

1 1 |n-1 3
2 .
Ll ) [ lel®axe ) [ eglD) ax
ik (1) o (x) 0 }3=1

computing the sums on the right side in the same manner as above,
we have,

1 x
L Abgl sy .
ik 0 0 (n - 1)! p(t) p(x)
1 x |n~1 nejt
f r v (x - %) ) at d
J ya rj (x) x
0 0 3=0 (n-j3-1)1|p) p(x

which proves the boundedness of the sum of the series on the
right-hand side.

This completely proves the above proposition on the con-
vergence of B. G. Galerkin's method.
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SECTION 2. THE SECOND ORDER EQUATION

We shall analyze in greater detail the case of the second-
order equation. Let us consider the second-order equation

4

= (py') + éi [a(xN)y] + r(xA) y= 0, (21)

satisfying the conditions in Section 1, and let us consider
boundary conditions of the type

y' (0) by (0)

. (22)

yt (1) hy (1)

We shall prove the convergence of Galerkin's method under the
following conditions imposed on the system (3):

a) The functions Py (x) are twice differentiable, and
satisfy the boundary conditions (22).

b) The set of derivatives q& (x) is complemented by
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the function ¥ (x) which is defined by the equalities

_ -1
¥ (1)=-h,

h—1

HOES W

i

¥ (X) 1, 0<x<1,
if neither of the two numbers ho and h1 is equal to zero and

¥ (x) =0

for h. = 0 or h, = 0, and it is complete in the space, with

—

p(t,e) = | plt - gl® ax + &|£(0) - g(0)|* + & l£(1) - &%,

(@)

where Ei =1 if hi is different from zero and infinity, and 61 =
= 0 if h, = 0 or h, = =,
i i
c) If h, = h1 = 0, the set of function pairs (¢j, ¢i)
is complete in the space of pairs <:I y dx, y:>'where y is a fune-

tion with a summable square, and where distance is defined by the
formula



23

-

o(£,8) = [ (olz - gl® ax+ |F (0) - G )%
0

with

F (x) j fdx, G (x)= J g dx.

In particular, condition c¢) is satisfied if the set of derivatives

{¢£ (x)} is complete and the set of functions (3) contains unity.

We shall dwell on the case when hO and h1 are different
from zero and infinity. The remaining cases are considered
analogously.

Let h; be finite (hi # 0, ®). The set of derivatives of

the functions of sequence (3) can be considered orthogonal in the
space with distance p (f, g)

p¢£¢£dx-+ ¢£ (0) + ¢i (0) + ¢£ (1) ¢£ (1) = o.

Ot

Let us consider the Fourier expansion of the function f
with finite norm p (£, O):
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f NZ Cicpli. (23)

This expansion converges in the space, with distance p (£, g). It
follows from the definition of distance that this expansion converges
in the mean on the interval O < x <1, and in the ordinary sense at
the points x= 0 and x= 1.

By virtue of the boundary conditions (22) it can be easily
shown that the functions ¢2m(x) satisfy the relation

1
Svo  axev ¢, (@+y Mo, 1)=0
0

Keeping in mind that the set of functions

W’ cp’1! (P’Z’oncgvlm,c..

is complete in the space with distance

s

g 2 2 2
p(f,e) = ) |f - g| ax+ |g(0) - £(0)| + | g(1) - £(D)],
0
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We conclude that any function f satisfying the relations

1
(e grax+ £(0) ¢ (0) + £ (1) 97, (1) =0,
o .

is of the form f = C¥, and that any function satisfying the re-
lation

ey dx+ £ (0) ¥y (0 £ (1) 1) =0, (24)

o(/f\..t

is an element of the linear space determined by the functional
¢3m. In particular, the Fourier series (23) converges to f in the

space with distance p (f, g).

The infinite system (10), which when truncated yields
the equations for Galerkin's n-th approximation, can be obtained
from the relations

( . 1

oL
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1

Syt a) v - Gy O plax=0 (25
0

by formal substitution of the series
y = 2 X Qs ¥ = Z %9 (26)

If y(x) is a solution of the system S, then y’ satisfies re-
lation (24) by virtue of the boundary conditions, and therefore
the expansion converges to y’ relative to the distance p(f,g). The
expansion for y converges uniformly by virtue of the convergeunce

in the mean of the series for y” on (0,1) and the convergence of the
series

From the above there follows the validity of the formal substitu-
tion of the series (26)in (25), and therefore to the solution of

system S, there corresponds the solution of equations (10) with
convergent sum of squares
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1
x = oy 97, axt 3" (0) 9, (+ 3" (1) 7, (1).
0

Conversely, given the solution of system (10), with convergent
sum of squares, we let

~ -\ .
J= X Xj_cpi’ y1 - Z_, XiCP 5

The second expansion converges relative to the distance p(f,g) and
the first uniformly, The function y is the integral of yﬁ; there-

fore, the relation obtained from (25) by replacing y° by 2 is
satisfied for the integrated terms (for x = 0,1). Integrating

this relation by parts, and using the boundary conditions for
@ , we obtain
1

1 X
S [py' + qy t S (ry—f)dx:ll pfdx + ¢'(0) [py. (0) + qy (0)] -
0 0 8 by !

9’ (1) c
- [py1+qy+8[ry-f]d>c] = 0,
1 0 x=1



28

whence

X

py  + qY+S(ry—f) dx = G,
0

+ =
[1c>y1 qy]X: 0= &
1

[Py, + @yl +S (ry - £) dx = C.
0

The first relation shows that y is a solution of the
equation, and a comparison of the first relation with the other

relations implies

y° ) =y (0, ()= v, (1),

because of the expansions of y and yi which converge for x = 0,1.

The function y satisfies the boundary conditions.

To complete the proof we must still establish the con-
vergence of the series (19),

We have
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A = [rdyp; + gy - e ] - o - [poge; + agse, + ool _ o+

;
+ Jr [ap/p, - To,¢ ] dx.
0]

The proof of the convergence of the series is completely
analogous to that given in section 1; it is only necessary to
keep in mind the boundary conditions for the functions ¢., and

i

also the fact that an expression of the type

1
Co; (0) + Kgf + (1) | fg/ax
0

is the Fourler coefficient of a function which is equal to C for
x=0, Kfor x=1, and £ (x) for 0 < x < 1.

SECTION 3. THE DIRICHLET PROBLEM FOR EQUATIONS
OF THE ELLIPTIC TYPE

Let us consider in the region D of the n-dimensional space
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x (x1,...,xh) the equation of the elliptic type

n n
2
v o“u T du
L(u) = /) Pix ax-an + LJA S;: + Bu="° (pik pkl), (27)
3, k=1 * =1 *

whose coefficients Ai, B depend linearly on the parameter A, with

the boundary condition

u=0 (28)

on the boundary I' of the region D.

The coefficients of equation (27) are assumed to be con-
tinuous with a sufficiently large number of partial derivatives
with respect to the Xy and the boundary of the region D is

assumed to have continuous curvature. Because of the ellipticity
of the equation, the quadratic form

Y Poy By (29)

is positive, and we will assume that it is also nondegenerate on
the boundary I' of the region D.
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Equation (27) will henceforth be written in the form

- vory du N T du _
L(u) = Lg;c—,\[_‘plk é;k)‘i‘ Lal -a;-‘i‘ bu = f, (30)
(1) 7 k (1) *
a, = a; + Al b
i i

Let

CP_], ¢2’..a,¢n,o-- (31)

be a set of functions having continuous second derivatives, and
satisfying the boundary condition.

As in the case of an ordinary
equation, Galerkin's method consists in finding approximations to
the solution of the problem in the form

m
uy =) e (32)
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with the constants yﬁm) determined from the system of equations

I (L(um) - f) ¢jdx = 0. (33)
(D)

We shall assume that the functions (31) satisfy the follow-
ing condition C. Whatever the function & (X1,...,Xh), having an

integrable square of the gradient

J Igrad @lz dx < + @,
(D)

equal to zero on the boundary I'y, there exists a sequence of linear
combinations Qm of the functions (31), the gradients of which con-

verge in the mean to the gradient &,

lim Jr lgrad (2 - @ ) |2 dx = O. (34)

1A —p 0
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Then the eigenvalues of the equation (30) are obtained by a
limiting process from the eigenvalues of system (33), and the
gradients of the functions (32) converge in the mean to the
gradient of the solution of equation (30).

We note that condition C is equivalent to the following
requirement.

The set of vector fields consisting of
a) the gradients of the functions ?,’

b) all vectors of the form

3¢ S
_ . . _ m m
Pi =0 (l 75 Jdo k)’ Pj - -a—X;’ k Bx

¢) the gradients of all harmonic polynomials, are
complete in the space of vector fields P(P1, P2,...,Pn) with
distance

n
2
p (P, P") = J ZlP_l' - P;\ dx.
(D) i=1

To prove the above proposition, we can assume that the gradients
of the set of functions (31) are orthogonalized in the following
sense,

J Lpika'——d}(: . (35)
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For any vector P, we can construct Fourier coefficients
from the formulas

) P I 3x, (36)

If the vector P is the gradient of a function which wvanishes
on the boundary D, or is approximated in the mean by the gradients
of such functions, then equality

8

P = E: V5 grad @, (37)
=1

is valid in the sense of convergence in the mean. A necessary
and sufficient condition for convergence in the mean of the series
(37) to some vector of the aforementioned type 1s the convergence

of the series E:lyj\z.

Along with the series (37) we shall also consider the
series

AR (38)
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From the convergence in the mean of the series E;‘yjlz

follows the convergence in the mean of the series (38). 1In fact,
denoting by by the parallel segment of the axis X connecting

the point x with the contour I, and keeping in mind that ¢j

vanishes on [’y we have

Y 3.
\§ _{ T ?ﬂ‘l 5. (1S 4|2
LYJ‘PJl |JLyja dx | = JL75 ax,
Ly * { 1
X
where § is the diameter of the region D.
Therefore
: 2 % 2
I E,ijj dx =< 8 { LJyj grad ¢j dx,
(D) (D)

keeping in mind that

T2
Pixbifk 7K L %

1,k (1)

!
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and that by virtue of the orthogonality of the gradients ¢j

rs @ ¢ T Voo T %
J LY@ &==1 J L P L Y555 L Vg3 &<
(D) (D) i,k (1) 1 (g) 1

B

N2
< * LJIYSI-

(39)

From this inequality follows immediately the convergence

in the mean of the series (38).
From (39) it also follows that from the convergence in the

mean of the sequence

P(m) = z y:(jm) grad cpj (40)

there ensues the convergence in the mean of the sequence

(41)
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We shall still need the following proportion: If the se-
quence (40) converges weakly to zero, then the sequence (41) also
converges weakly to zero. Weak convergence of (40) to zero means
that the norms

j E: [P§m)l2 dx

(D) (4)
are bounded, and that for any vector Q with bounded norm

lim [ © (m) _
pow j ) YFy  dx=0.

D (1)

From (39) follows the boundedness of the norms of the functions
#m; therefore to establish weak convergence of (41) it suffices

to show that for any function g with integrable square

mlff‘; Jr gy, dx = O. (42)

Clearly it suffices to establish (42) for continuous



38

functions g. Passing on to the limit in the equality

%,

J 3
aX—l

Py ¥ S eV
J BT 8Ty
D

J
D
where

G = g (X1: Xzyc'-yxn) dx‘]’

Oe____,N

we obtain

whence follows equality (42).
Let us consider the equation (43)

A= ) o (43)



39

Because of the assumptions made about the coefficient Piy?
there exists a Green's function for equation (43), with the aid
of which the solution of the equation is written in the form

U=jG(mz)F@)&. (44)
D

Formula (44) gives the solution to the Dirichlet problem for

equation (43), if the function F (§) satisfies HSlder's con-
dition

|F(g') - Fem)| <k |eren| o< =1,

where lE'E"I is the distance between the points &', E". 1In par-
ticular, (44) satisfies equation (43) if the function F (%) has
bounded partial derivatives.

It follows from the well-known properties of Green's

function that this function itself and its partial derivatives
can be written in the form

G (X, E) = _G-(Xq—z)’
B

G _ Gi(X’E)

aX1 llen—‘l



40

where a, a; are uniformly continuous functions of the variables

x; and Ek in the region D.

We shall need further the following proposition: If the
function F (¥) is summable in powers of q = 1, then the expression

(44) and also

F (¥) dg (45)

_ T
Ui J ax.
D

are defined almost everywhere, where the function |U|p is summable
n

for p € —2 g, the function |U.|p is summable for p $ ——— q,
n -2 - n -1
and
p [ p(d f {P [ Fie
Jr [P ax<c, j [F|Max | [0;]7 ax = ¢y | [F[? ax
D D D D
This proposition follows immediately from the following

lemmas

Lemma: Let e <n, g=21, q=sp< %} g, let the function

F (£) be defined and positive in the region D and |F|q be summable,
and let A (x) be a subregion of D dependent on the point x, the
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diameter of which is not larger than 8.
Then the function

D= BEME o) (46)

A(x) r

ls finite almost everywhere in D, and

(rlel)

1
e a’ | 7 |%r e
’ (47)

V1@ Paxsce®
D

where C is a constant depending on the numbers «, g, p, n.
Let us establish first the inequality (47) for the bounded
function F(E).

In this case I(x) is finite everywhere. By virtue of a
theorem of Riess(5) the function

SCY P e Y o

A(x)
G (a,B) = Max
F(g)

S | F () |9 ae
D
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is a logarithmically convex function of the variables a = ’

1

1 p

B = — in the triangle 0 <a <B, 0<P =<1, j.e., for 0 <t <1,
q

¢ =aq t+a, (1 -1t), B= B1t + 52 (1 = t) we have
t (1-t)
G(u’ B) =G (0-1’ B-]) - G (0.2, 52)-

Computing the limits of the means for a = B = O, we have

Max | F (¢) 4t
J G
G(0,0) = Max A(x) = Max I & < C16n*“
F(g) Max F (x) X -
% A(x)

where 01 depends only on n and a. On the other hand, because of

H31lder's inequality, for ap <n

1 1
rF()aE _, rFE)ENT /T - =
J ———;a——— < S ——:;q;——-/ b S J F‘(E) dé) P,
A(x) A(x) A(x)
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Therefore

15 i
[ Jr< F(¥) d?;/ dx_] P < J F(E)dE,/ P [ I dx r F(E)di] P _
D

o D D A(x) e
1 no_
r Minse [ GE1P _ o P
D D

where 02 depends only on n, p and a. The inequality obtained

gives

Because of the logarithmic convexity of G, for O =< %I <1,

1.1, n

q D aq



bt

1 1 1
1- 1- -
¢ (L, q Q./'q \\ RG] q
( q>sG (0,0)G 1) = ¢, c 9 5 .

=

1
The right-hand side of this inequality is finite, since a :; < n,

and consequently (47) is proved for bounded F (%).

Now let F (£) be a function with summable g-th power. We
will construct an increasing sequence of bounded functions F (¥)
converging in the mean power q to F (¥).

By virtue of Lebesque's theorem

Ip (x) = 1lim Iy (x).
m—® ‘m

Since the sequence Jim increases, the inequality (47) for F is

obtained by a limiting process from the corresponding inequality
for F . It follows in particular, that the function J (x) is
m ¥
finite almost everywhere.
Let us now turn our attention to the system of equations

(33).
Keeping in mind the orthogonality of the functions ¢ (35),

J
and in view of Green's theorem
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JuZ <L %})dx:‘Jp 2 o ax,

ik 9x OxX
D(l)l k DO T

which holds for any function u satisfying the relation (28), we
can write the system of equations (33) in the form

@ ot @

y.oo=- EJ Ay + f
J s=1 is s J
(.] =1, 2,...,]11), (48)
where
o] M
A :J(Z a.'éip—+bqp o dx,
= 5 (1) T J L (49)
J J

D
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The system (39) is a truncation of the infinite system

-2
v +z Ay =f (=1, 2..0). (50)
s=1

Let us consider in Hilbert space the transformation

Y—f—ZAy (51)

u :Zy' a_cpi, uZEY'tp (52)

it follows from (51) that Y is the Fourier coefficient of the

d
vector
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j aG(Zau +bu—f>dx (53)

D X. (1)
J

In fact, putting

BT eu®n®
D j (i) 1 1

(m) (m)
Z 'J Bxl b _12 Yiin

By virtue of Green's formula, we obtain

- %9,
J D i,k j_k 1 an D j
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By virtue of the lemma which has been proved, the
(m)

convergence in the mean of U to U, follows from the convergence
i 1

m
in the mean of the series (52), and consequently, Y converges
d

to the Fourier coefficient of the vector U . We shall note that
i
in the sense of convergence in the mean

S,
U ZZY ﬁ’
i J ax
i

since U is approximated in the mean by the vectors U " s which

i i
are the gradients of continuous functions which vanish on the
boundary D.

We shall now prove that the Fourier coefficients of the
gradient of the solution of equation (30) are a solution with a
converging sum of squares of the system (50), and conversely, to
any solution of system (50) with a converging sum of squares,
there corresponds a solution of equation (30) whose gradient
is determined by the formula

grad u = E:y grad @ .
i J

Let u be a solution of (30). Then in the sense of



convergence in the mean

u= Z yjq’j s grad u= z yj grad (pj.

The solution u satisfies the relations

I[L (u) - f] @ dx= 0,
D J

and applying Green's formula we have

. du O 3
i[i,ik pika_xig‘i—@ai%eru_f)cpj]dX: ”

substituting in the above the expansions for u and grad u

which converge in the mean, we find that Y satisfies the
J

system of equations (50).

Conversely, if Y is a solution o system (50) with a
j :

49
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converging sum of squares, then by virtue of the fact that the
transformation (51) is equivalent to (53), and also putting

a¢j v
WS LYy 5 BT L Y%

we have

&G y
N < e N
uy = - _anCLaiui+ bu - £ j dx; (54)
D

almost everywhere., We prove analogously that

u= -

G(Zajuj+bu—f>dx (55)

O e——

almost everywhere.

2 2
The functions iui ’ |ui| are integrable, therefore F =

= Z aju; + bu - f has also an integrable square. It follows from

the above remark that both u and u; are integrable in the power

2n
P, = ——. Applying repeatedly this proposition, we see that
n-2
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both u and u;, and hence also the function F are integrable in the

power pq > HELT.

But then, by virtue of HSlder's inequality

P 1
x P! r p
gl = (J 15l @0 (J IFlPag)
D J D
p-1

p(n - 1)
Keeping in mind that —— < n, we conclude that u and the u,
p_

are bounded. Now it follows from (54) that the u; are continuous

and satisfy the Holder condition with any fractional index, and
are equal to the derivatives of u. Because of this, F is con-
tinuous, and satisfies Holder's condition, and therefore u satis-
fies equation (30) and the boundary condition (28).

From the equivalence of the Dirichlet problem for equation
(30) and the system (50), which has been proved, there follows,
in particular, the coincidence of the eigenvalues for system (50)
and equation (30).

We shall now prove that the eigenvalues of system (50) and
its solution are obtained by a limiting process from system (48)
where
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m
. ' 2
un )y, - y§m7i = 0.
3=1

m—®

From this will clearly follow the above-mentioned proposition
about Galerkin's method.

To establish these properties for system (50) it suffices
to show that the transformation (51) is completely continuous¥,

i.e., that weak convergence to zero of y(yi, y2,...,yh,...)

1m y M=o Yy

m-—*®

(m),2

j <M

1

m
implies strong convergence to zero of the sequence Y( )

¥It can be easily seen that in the case of partial differential
' 2
equations the series E;IAjsl generally no longer converges. To
this end it suffices to consider the equation
A + a(P:O
P+ A ox

on the sguare 0 <X, y <7 and the set of approximating
functions

4 sin nx° sin mx

9 = 5 .
m,n Tr2 n24-m2
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m
The numbers Yj are defined as the Fourier coefficients of the

(m)

vector Uj which is determined by the formula (53); therefore

it suffices to show that from weak convergence to zero of the
functions Fm(z)

1im I Fo(8) g (8) a& = o, j IFm (E)lzdi <M, (56)

m—®
D

there follows convergence in the mean to zero of the vectors

(m) _ &
Uy = 5 B (B) R
D

To see this, we make first of all the following remark.
If the function H (x, £) is uniformly continuous when x

and § vary in D, then from (56) follows uniform convergence to
zero of the function
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B ()= [ B (% 8) B () ac.
D

\

In fact, for an arbitrary E the region D can be decomposed into a
finite number of parts D;, in such a way that the point ¥ which

lies in Da satisfies the inequality

lH (x, £) - Hu (X)l < E, Hu = H (x Ea)’

where £  is a fixed point of Du' Then

| (x)| <E Jr |F_| dx + Z |7, (x) |- | Jr Fd| <E,/M: volume D +

D (a) D,

+ max |H (%¥)]- z | Jr F_dE
(a) Dq

and since Da is independent of x, this shows uniform convergence
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of h to zero.
m

Because of the above-mentioned property of Green's function
G (x, ), we can represent its derivatives in the form

J

oG
_—5 = G (X: E) + BJ (X, E),
%3

where the terms Bj (x, ) are uniformly continuous as x varies in

the region D, and the first terms satisfy the inequalities

(X’ E)l <L

la.
J -1
=2 |”
and wvanigh for
|x£| > s,
where 3 is arbitrarily small.
Then
o (x, €) Fy (5) d
U5 = ey (m B) By (8) ap+ [ By (x B) By (2) aE
D D
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The first terms of these expressions ﬁ(m)(x) satisfy, by virtue of

our lemma the inequalities

1

q Ml w2412

x | <CAS | j |F| az
D

and consequently,

J
D

r |ﬁ§m)|2 dx = (CAS)Z M.

The second terms, because of weak convergence to zero of
the sequence F (£) and uniform continuity of the kernels

B. (x, £), converge uniformly to zero. Since 5 can be chosen

’ (m)

arbitrarily small, this proves the strong convergence of Uj to
Zero.
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